
Lecture 13. Mathematical Models  

1. Model types.

 

Mathematical models provide the necessary framework for integration of our 
understanding of individual atmospheric processes and study of their interactions.  

Note that atmosphere is a complex reactive system in which numerous physical and 
chemical processes occur simultaneously. 

 

Figure 1 Elements of mathematical atmospheric model (Seinfeld& Pandis, 1998). 



 
Model scales 

 
Atmospheric chemical transport models are defined according to their spatial 
scale: 

Model Typical domain scale Typical resolution 

Microscale 200x200x100 m 10 m 

Mesoscale(urban) 100x100x5 km 1 km 

Regional 1000x1000x10 km 10 km 

Synoptic(continental) 3000x3000x20 km 100 km 

Global 65000x65000x40km 1000km 

   

Domain of the atmospheric model is the area that is simulated. The 
computation domain consists of an array of computational cells, each 
having uniform chemical composition. The size of cells determines 
the spatial resolution of the model.  

 

Atmospheric chemical transport models are also characterized by their 
dimensionality:  

 

0D or zero-dimensional (box) 
model 

 

1D or one-dimensional (column) 
model 

 

2D or two-dimensional model 

 

3D or three-dimensional model.        

Figure 2 Schematic depcition of (a) a box model (zero-dimensional), (b) a column model (one-
dimensional), (c) a two-dimensional model, and (d) a three-dimension model (from Seinfeld and 
Pandis, 1998). 



   
Model time scale depends on a specific application varying from 
hours (e.g., air quality model) to hundreds of years (e.g., climate 
models). The equations are integrated with a time step as long as 
possible to increase computational speed but should exceed value 
creating instability.  

Two principal approaches to simulate changes in the chemical composition 
of a given air parcel:

 

1. Lagrangian approach: 

air parcel moves with the local wind so that there is no mass exchange 
that is allowed to enter the air parcel and its surroundings (except of 
species emissions). The air parcel moves continuously, so the model 
simulates species concentrations at different locations at different 
time,  

2. Eulerian approach  

model simulates the species concentrations in an array of fixed 
computational cells.  

 

Figure 3 Movement of air parcel in a Lagrangian model. 



  
2. Box models (or ‘zero dimensional’, or 0-D models) 

 
The 0D models are the simplest models, where the atmospheric domain is 
represented by only one box. 

 

In a box model concentrations are the same everywhere and therefore are 
functions of time only, ni(t).  

Figure 29.3 A schematic diagram of 0-D model of atmospheric chemistry (Eulerian 
approach). 

   



Eulerian box model: 

Aerosols enter a box in two ways: 

1. source emissions; 
2. transport: advection (the transport of a species by the mean horizontal motion of 

air parcel) and entrainment (the vertical movement of air parcels as a consequence 
of turbulent mixing) 

Aerosols are removed from a box in three ways: 

1. transport: advection out of the box and detrainment due to upwards motion; 
2. chemical transformations; 
3. removal processes: dry deposition on surface or wet deposition by precipitating 

clouds. 

 

In the Lagrangian box model: advection terms are eliminated, but source 
terms vary as the parcel moves over different source regions.   

Some features of the box models: 

 

The dimensions and placement of the box is dictated by the particular problem of 
interest. 

For instance, to study the influence of urban emissions on the chemical composition of 
air, the box may be design to cover the urban area. 

 

Box models can be time dependent. In that case, any variations in time of the 
processes considered need to be accurately supplied to the model. 

For instance, if a box model is used to compute air quality for 24-hr day in an urban area, 
the model must include daily variations in traffic and other sources; diurnal wind speed 
patterns; variations in the height of the mixed layer; variation of solar radiation during the 
day; etc.   

Limitations of a box model:  

i. assumes rapid vertical and horizontal mixing; 
ii. assumes uniformity of surface sources;   



Simplified mathematical formulation of a box model: 

 

A separate equation is written for each chemical species of interest. For 
species i, present at concentration ci, in a well-mixed box of dimension 

yx,  and height H, the time dependence of the concentration of species i is 
given by  

)()( 0
iiiiii ccyuHSyHxRQyHxc

dt

d

 

Where Qi is the mass emission rate of i [kg.h-1], Si the removal rate of i 
[kg.h-1], Ri its chemical production rate [kg.m-3.h-1], ci

0 its background 
concentration, and u the wind speed.  

Dividing by Hyx ,,  (assuming H constant) the box model equation 
becomes: 
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where qi and si are the emission and removal rates of i per unit area [kg.m-

2.h-1].  

Dry deposition. The removal rate due to dry deposition can be described 
using the dry deposition velocity vd as si=vd ci. The deposition process can be 
interpreted in terms of an electrical resistance analogy, with three resistances 
in series (aerodynamic resistance ra, quasi laminar layer resistance rb, and 
canopy resistance rc) with one in parallel (gravitational settling vs).  



  
Assuming that particles adhere to the surface upon contact (rc=0), then the 
vertical flux is 
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The deposition velocity is the inverse of the total resistance rt  and is given 
by: 
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The box model equation becomes: 
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The terms in the right-hand side correspond to the changes in the 
concentration of I as a result of emission, chemical reaction, dry deposition, 
and advection. 

The residence time of the air box advected at wind speed u over x is  

u

x
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Entrainment:  The mixing height of the boundary layer varies diurnally, with 
low value at night and high value during the day. When the mixing height 
decreases there is no mixing with the environment and the concentration 
does not change, while the mixing height increases, there is entrainment and 
subsequent dilution. The increase of concentration ii cc by increase of 
mixing height HH in an environment of concentration ci

a is given by  
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The entraining Eulerian box model equation is: 
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The entraining Lagrangian box model equation is 
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The chemical loss or production rate Ri is dependent on the number of 
chemical reactions included into the model, and it is given by  

dci/dt = Ri = Pi – Lici  

Pi is the production term of species i; and Li is the loss rate. 



 
The solution of the entraining box model equation with chemical reaction is 
given by: 
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Example of Chemical Problem: 

Find the rate of change of NO2 concentration if nitrogen dioxide is involved 
in the following reactions with the rate coefficients J, kb, and kc: 

(a) NO2 + h

 

-> NO + O (J) 

(b) NO + O3 -> NO2 + O2 (kb) 

(c) NO + NO + O2 -> NO2 + NO2 (kc) 

Solution: 

The rates of these reactions are  

Ratea = J [NO2] 

Rateb = kb [NO] [O3] 

Ratec = kc [NO] [NO][O2] 

The rate of change of NO2 concentration can be written as production minus 
loss terms. Thus, 

d [NO2] /dt = PNO2 – RNO2 where PNO2 and RNO2 are total chemical production 
and loss terms, respectively: 

PNO2 = Rateb + 2 Ratec = kb [NO] [O3] + 2 kc [NO] [NO][O2] 

RNO2 = Ratea = J [NO2] 

Therefore 

d [NO2] /dt = PNO2 – RNO2= kb [NO] [O3] + 2 kc [NO] [NO][O2] - J [NO2] 



2. One-dimensional (1-D) models  

One-dimensional models assume that species concentrations are 
functions of height and time, ci(z, t). In these models, which ignore all 
variations with longitude and latitude, the exchanges of mass along 
the vertical are represented by en eddy diffusion formulation: 
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where w is the vertical wind speed from large and small scale 
processes, Kzz the eddy diffusion coefficient is determined empirically.  

 

SUBGRID PARAMETERIZATION: 
A. TURBULENCE 

The number of unknowns in the set of equations for turbulent flow is 
larger than the number of equations. For any finite set of equations the 
description of turbulence is not closed. The closure of turbulent 



equations requires parameterizing the unknowns which cannot be 
solved explicitly by a prognostic equation.  
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An example of first order closure of turbulent transport of a species i 

of concentration ci consists to parameterize 
z

c
Kcw i

zzi'' where the 

parameter Kzz is a scalar with units of [m2.s-1]. Troen and Mahrt 
(Bound. Layer meteor., 37, 129-148, 1986) have proposed the 
following formula for the eddy diffusion coefficient: 
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where k=0.35 is the von Karman constant, g=9.807 [m2.s-1], 
pcR

VV p
T

1000 the virtual potential temperature [K], 

)61.01( qTTV the virtual temperature [K], q the specific humidity 
[kg.kg-1], R=287 [J.kg-1.K-1] gaz constant, cp=1004 [J.kg-1.K-1] the 
specific heat capacity of air, (u,v) the horizontal wind components, hBL 

is the boundary layer height [m] given by 
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where )()""( 0shs Cw is the surface heat flux [W.m-2], and Ch is 
the heat transfer coefficient [W.m-2.K-1] between the surface (subscript 
s) and the reference level (subscript 0). LMO values show strong 
diurnal variation with negative values during the day, and negative at 
night. 

B. CONVECTIVE TRANSPORT 
Transport in deep convective clouds is very localized.In a 
region typically covering the area of a grid cell in a global 
model 99.9% is not affected by convective updraft. 
Parameterization must be introduced to estimate the effects of 
these localized but intense processes on the distribution of 
tracers.   

3. Two-dimensional (2-D) models  assume that species 
concentrations are uniform along one dimension and depend on the 
other two and time, for example ci(x, z, t).  

 

2-D models are often used in description of global atmospheric 
chemistry, assuming that concentrations are functions of latitude and 
altitude but do not depend on longitude. 

 

2-D models have mainly been used for stratospheric studies, because 
in troposphere there are essential longitudinal variations.  

 

Figure 4 Computational cells of 2D model 

  



3. Three-dimensional (3-D) models simulate the full concentration 
field ci(x, y, z, t). 

 

Figure 5 Computational cells of 3D model. 

 

3-D models require simultaneous calculations of the meteorological 
field and chemistry. The chemistry is often very simplified, because of 
computational complexities of the meteorological field.    

Decoupled (or off-line) 3-D chemical model: 

first meteorological model is run to for chosen time period and for a 
geographical location (or entire globe), and the calculated wind field, 
temperature, water vapor, cloud, etc. are stored to be used as input variable 
in 3-D chemical model. 

Advantage of decoupled 3-D model: treats photochemical processes with 
more details. 

 

3-D chemical transport model seeks a solution of the continuity (or 
mass conservation) equation for each species (gas or aerosols) 
included in the model.     



General form of the continuity equation:  

dci/dt =(dci/dt)tran + (dci/dt)cloud + (dci/dt)rem + (dci/dt)aeros + (dci/dt)chem + Si 

where ci is the concentration of a species i; 

(dci/dt)tran is the rate of change of ci due to transport (advection, diffusion, 
etc.); 

(dci/dt)cloud is the rate of change of ci due to cloud processes (cloud 
scavenging, evaporation of cloud droplets, aqueous-phase reactions, wet 
deposition, etc.); 

(dci/dt)aeros is the rate of change of ci due to aerosol processes (transport 
between gas and aerosol phases, aerosol microphysical transformations, 
etc.); 

(dci/dt)chem is the rate of change of ci due to gas-phase reactions; 

Qi is the emission rate.  

Which models are used for which applications: 

0-D and 1-D models are used when one knows very little about a problem or 
when data are not available to validate model performance; 

2-D models are used when a horizontal dimension is important. 

3-D models are used when the most complete answers are required, but 
computer resources and model building still severely limit their use.   


